
After the 1979 accident at the Three Mile Island nuclear power plant, many 

energy pundits concluded that efficiency would curb future demand, and 

renewable sources would accommodate any future growth.  Efficiency did 

improve dramatically, but demand far outpaced new supplies of renewable fuels.  

The U.S. now burns an additional 400 million tons of coal every year. 

Figure P.1  Growth in Total U.S. Fuel Consumption – Post-TMI
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Source: EIA Annual Energy Review 2003.

Figure P.2  Growth in Fuels Used to Generate Electricity – Post-TMI

1979 20031985 1991 1997

Renewables

Coal-fired plants accommodated half of the growth in demand for electricity in the 25 

years after Three Mile Island, and continue to satisfy half of the total demand.  The 

accident notwithstanding, nuclear output rose steadily, too.  By comparison, gas-fired 

power has lagged; by and large, gas has merely displaced oil.
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Figure 1.1  Maximum Distance to Oil vs. Average Price
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Source: WTRG Economics; EIA Annual Energy Review 2003; ExxonMobil; J. Ray McDermott Inc.

0

5

10

Over the long term, the price of oil has held remarkably steady, even as the distance 

from well-head to the oil has increased from hundreds of feet to miles.  Today's 

production costs in the deep waters of the North Sea are not very different from costs 

in southeast Texas a century ago.
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Figure 1.2  U.S. Oil Prices and Cumulative Production

Source: EIA, Annual Energy Review 2003; American Petroleum Institute; John Fisher, Energy Crises in 

Perspective (Wiley, 1974).

Cumulative Production (Quads)

P
ri
c
e
 (

D
o
lla

rs
/M

ill
io

n
 B

tu
, 
C

o
n
s
ta

n
t 
2
0
0
0
 $

)

1 10 100 1000
1

10

Cumulative U.S. oil production from 1896-2003; 1 Quad=172 million barrels of oil.

Cumulative production from U.S. oil wells alone approaches two hundred billion 

barrels.  Price spikes and sags have been driven by political and regulatory instabilities 

worldwide, not by changing discovery and extraction costs.
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Figure 1.3  Energy Density of Primary Fuels
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A Quad's worth of wood is a huge forest.  Pound for pound, coal supplies about twice 

as much heat.  Oil is twice as good as coal.  And a gram of uranium-235 is worth about 

four tons of coal.  Historically, we have always pursued fuels that pack more energy in 

less space.
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The horses, engines, motors, jets, antennas, and lasing cavities that transform primary 

fuels into motion and beams have evolved on a trajectory of more power in less space.

*for complete power system
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Source: EIA Annual Energy Review 2003.

Energy consumption is often totaled up in Quads--thermal units of raw heat.  But this 

metric conceals more than it reveals.  In the United States, about 6 Quads worth of raw 

thermal energy go through multiple stages of refinement every year, with 99 percent 

(or more) of the original thermal energy being discarded along the way, to yield the 

extremely highly ordered power required to drive such things as radios, 

microprocessors, lasers, and CAT scanners.
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Figure 1.6  Primary U.S. Energy and Fuel Uses

We use primary fuels to make electricity, move vehicles, and produce heat.  Coal 

generates electricity.  Oil is the fuel of transportation.  Natural gas is used principally 

for raw heat; it also now generates 18% of our electricity.
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America spends about $400 billion a year on raw fuel ($500 billion with oil priced 

in the $50/bbl range).  But at least $500 billion a year is spent on equipment used 

in the higher tiers to concentrate and convert energy—generators (gen.), furnaces, 

car engines, motors, and light bulbs, for example. The largest and fastest-growing 

segment of the power-conversion economy now comprises such things as power 

semiconductors, lasers, ultrasound machines, magnetic resonance imagers, and 

telecommunications equipment that produce highly ordered power.

Figure 1.7  Pyramid of Spending
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Source: U.S. Census Bureau; EIA, Annual Energy Review 2003.
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Figure 1.8  Cost of Energy
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Source: Various; including EIA Annual Energy Review 2003.

The price of power rises sharply with rising power density.  Relatively unreliable grid 

power retails for 10 cents per kWh.  The same amount of thermal energy locked up in 

raw coal costs about 1/3 of a cent.  Computer-grade power (UPS) costs $3 or more per 

kWh.
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Figure 1.9  U.S. Energy Production and Cost

Source: EIA, Annual Energy Review 2003; American Petroleum Institute; John Fisher, Energy Crises in 

Perspective (Wiley, 1974).

Electricity

Retail
Gasoline

Oil

Cumulative Production (Quads)

P
ri
c
e
 (

D
o
lla

rs
/M

ill
io

n
 B

tu
, 
C

o
n
s
ta

n
t 
2
0
0
0
 $

)

1 10 100 1000
1

10

102

Fuel prices have fluctuated, but new fuels and improvements in power-conversion 

hardware have steadily lowered the average retail price of electricity ever since Edison 

fired up his first generators in 1882.  1 million Btu of electricity is a 60 W light bulb 

running for 6 months; 1 million Btu of gasoline is about 8.1 gallons, and 1 million Btu of 

crude oil is about 7.1 gallons.
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Figure 1.10  Fuels for the Economy*
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Source: EIA Annual Energy Review 2003, Bureau of Economic Analysis, and U.S. Census Bureau
Historical Statistics of the United States Colonial Times to 1970.

Two-thirds of the U.S. GDP now comes from industries and services fueled by 

electricity.  All the high-growth, information-centered sectors of the digital economy 

run entirely on electricity. 
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Figure 2.1  U.S. Energy and Electricity Consumption
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Source: EIA Annual Energy Review 2003 ; U.S. Census Bureau Historical Statistics of the United States 

Colonial Times to 1970.

U.S. consumption of Quads (raw energy) rose ten-fold in the twentieth century; 

electricity consumption rose thirty-fold.
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Source: EIA Annual Energy Review 2003; Sam H. Schurr et al., Electricity in the American 

Economy: Agent of Technological Progress (Greenwood, 1990).
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Figure 2.1a  Energy to Power Shafts and Electrons 

The progeny of James Watt’s thermomechanical engine that burn fuel to move things—

not just steam trains, but diesel trucks, jumbo jets, ski-doos, leaf blowers, Shuttles and 

SUVs—now collectively consume about 30 percent of all the energy we use.  It was the 

advent of an engine that burns fuel to move electricity that would in due course dominate.  

Today’s electric power plants consume 40 percent of all our raw fuel.
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Figure 2.2  Aviation Engine Power Density 
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Source: Vaclav Smil, General Energetics: Energy in the Biosphere and Civilization (Wiley, 1991).

Piston engines supplied enough power per pound to get the Wright Brothers into the 

air.  Supersonic jets required a hundred-fold increase in power density, which was 

supplied by gas turbines.
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Figure 2.3  Engine Power Density and Shaft Speed
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Engines have evolved along the same trajectory as the fuels they consume, burning 

more energy, faster, at higher temperature, to produce more power in less space.

*for engine only
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Source: Peter Huber and Mark Mills, “Power Paradigm II: Broadband Power,” Digital

Power Report, December 2000.

Figure  2.3a Bridging the Power Transmission Gap

The electrical power train is overwhelmingly superior to the mechanical—five 

orders of magnitude better on every key metric.  Small wonder, then, that electric 

power has been steadily displacing all other forms, at the front end of our energy 

economy.
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Source: Isaac, R. “Influence of Technology Directions on System Architecture,”  IBM Research Division, 
Sep. 10, 2001.

Figure 2.4  Energy and Logic
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In 1946, the vacuum tubes in the ENIAC computer required 10 Watts or more to 

execute a single logic operation.  Today’s semiconductor gates are over ten million-

fold more efficient. 
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Figure 2.5  Microprocessor Peak Power

Source: Intel.

Total power per microprocessor rises because the number of gates per chip, and the 

speed at which they switch on and off, rise faster than the power-per-operation falls.
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Source: Intel.
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Figure 2.5a  CPU Thermal Output

As the number of gates per chip and the speed of the chip both rise, the total 

power required by each chip rises even faster. Cooling microprocessors to 

keep them from melting down is already a major challenge.
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Source: Peter Huber and Mark Mills, “Silicon & Electrons,” Dec. 2002, www.digitalpowergroup.com.
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Figure 2.6 Computing and the Internet: Aggregate U.S. Electricity Consumption* 
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* Includes kWh in manufacturing, operation of end-use & network equipment, and infrastructure.

Billions of chips, hundreds of millions of phone lines, tens of millions of 

switches, routers, and servers, thousands of data warehouses, and power 

quality hardware add up to significant demand for electricity.  The 

consumption totals shown include power consumed in manufacturing digital 

equipment, the operation of both terminals and networks, and cooling loads.
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Figure 2.6a The First Analysis of Power Realities: 1958

H
e
a
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In 1958, Hans Thirring quantified, almost certainly for the first time, how much energy 

might be required to power the hardware of telecommunications and medicine.  One of his 

objectives was to debunk “widespread misconceptions about the influence of radio waves 

on the climate.”
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Figure 2.7  Transistors for Logic and Power
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IBM 7000 Series

Transistor Radio

The power "regulator" of the digital age is the semiconductor gate that controls a flow of 

electrons or photons.  William Shockley's team built the first transistor in 1949; the power 

switched by logic transistors has since been cut in half about every two years.  Pushing 

semiconductors up the power curve took longer. It wasn't until 1980 (patent issued in 1982) 

that Frank Wheatley and Hans Becke of RCA invented the Insulated Gate Bipolar Transistor 

(IGBT), capable of switching kilowatts in industrial robots, hybrid cars, aircraft, trains, tanks, 

ships, and machine tools.
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James Watt’s mechanical regulator controlled the flow of steam; the 

revolutionary new regulator of our era is the semiconductor gate, which 

controls the flow of electrons and photons.  Powerchips—chip-based arrays of 

ultra-high-power transistors—are now revolutionizing the control of power.
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Figure 2.7a  Switching Power
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Source: Peter Huber and Mark Mills, “Analog Power,” Digital Power Report, April 2001. 
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Figure 2.7b Silicon Power Devices and Applications

Power chips exploit the same quantum-physical phenomena that are harnessed by 

integrated circuits.  But now the semiconductor junctions are handling hundreds of watts, 

or thousands or millions.  Different powerchip architectures operate at different speeds, and 

can handle different amounts of power.  Logic chips control the movement of bits; 

powerchips control the propulsion of high-speed trains, trucks, cars, and industrial 

machines.
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Figure 3.1  Pyramid of Energy: Bits and Photons 
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Laser Photons

A laser's intensely ordered flow of photons is far more useful than the sunlight that 

grows grass.  But the laser beam depends on complex arrays of generators and power 

electronics behind it, which dissipate most of the energy in the raw fuel in the process 

of converting a tiny fraction of it into perfectly ordered photons.
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Figure 3.2  Origin and Utilization of the World’s Energy in 1937

Source: N. B. Guyol, Energy Resources of the World, Department of State Publication 3428 (U.S. 
Government Printing Office, June 1949), reproduced in Hans Thirring, Energy For Man: From Windmills to 

Nuclear Power,  (Indiana University Press, 1958), p. 43.
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This graphical presentation of how energy is dissipated as it is purified was published 

in 1949. Updates are routinely used to show how most of the energy we use is simply 

"lost."  All they really show is that it takes a great deal of energy to purify energy 

itself.
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Figure 3.3  Pyramid of Energy: Bits and Electrons 
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A great deal of raw fuel is needed to get a trickle of ultra-reliable electricity into a 

microprocessor CPU.  A rapidly growing share of our electricity is now used to 

transform ordinary grid electricity into computer-grade power.
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Source: Martin Abrahamsson et al, “Life Cycle Assessment on Silicon and Gallium Arsenide Transistors,” Chalmers University of 
Technology, Gothenburg, Oct. 1998; Pacific Northwest Pollution Prevention Resource Center, “Energy and Water Efficiency for 
Semiconductor Manufacturing,” Feb. 2000; International Technology Roadmap for Semiconductors, “Environment, Safety, and 
Health,” 2001 ed; Eric D. Williams et al., “The 1.7 Kilogram Microchip: Energy and Material Use in the Production of 
Semiconductor Devices,”  Environment, Science, and Technology, American Chemical Society.

* An average microprocessor weighs about 0.2 grams in silicon.
** Does not include water use at fab (200,000 grams flow per 1 gram silicon), nor additional primary materials required to produce
semiconductor-grade chemicals. Coal, natural gas, and oil are for electricity consumption, at national average fuel mix. (Uranium 
is a significant source of the electricity, but near zero physical consumption of material.)
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Figure 3.3a  Pyramid of Materials: Manufacturing Microprocessors* 
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Huge amounts of raw materials go into erecting the atomic-scale edifices that comprise a microprocessor.  Hundreds of 

tons of earth and rock are mined to extract the pounds of rare earths, lanthanides, erbium, cerium, gold, gallium, 

tantalum, bismuth, indium, and perovskite that serve as raw materials required to manufacture the multiple copies of a 

single integrated circuit.  Chip fabs pump air, water, chemicals, and fuels by the ton.
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Figure 3.4  Pyramid of Energy: SUV

Energy consumes itself at every stage of its own production and conversion.  Only 

about 2 percent of the energy that starts out in an oil pool two miles under the Gulf of 

Mexico ends up propelling two hundred pounds of mom-and-the-kids two miles to the 

soccer field. 
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Source: George B. Johnson and Peter H. Raven, Biology, McGraw-Hill (6th ed.), Figure 28.13c.

Figure 3.5  Pyramid of Energy: Life and Food 

* Btu/m2/Year (150,000 Btu roughly the energy in one gallon gasoline)

Energy is both purified and dissipated as it moves up the food chain in the biosphere.  

High-level carnivores depend for their survival on a huge expanse of plant life three 

steps below. 
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Figure 3.6  Power Density and Energy Waste

A system sheds “entropy”—chaos—only by shedding energy itself, in the form of 

waste heat.  To produce more well-ordered energy, faster, in less space--to increase 

"power density," roughly speaking—one must throw away more energy, faster.
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Figure 4.1  The Multitiered Grid
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Measured by route miles and physical footprint, the multitiered North American grid is the 

second largest network on the planet, after the roads and highways.  Generating stations 

dispatch electrical power through some 680,000 miles of high-voltage, long-haul transmission 

lines, which feed power into 100,000 substations.  The substations dispatch power, in turn, 

through 2.5 million miles of local distribution wires to our toasters, computers, and industrial 

robots.
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Figure 4.1a The Power of Scale

To burn fuel more efficiently in a stationary power plant, you build a bigger furnace.

There are enormous economies of scale in building and maintaining bigger engines and 

generators, as well.  Thus, decade by decade, power plants have grown bigger, and in 

so doing have grown more efficient.  
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Figure 4.2 U.S. Electricity Transmission

The deregulation of interstate electric power sales promoted investment in new, 

unregulated power plants, but reduced incentives to invest in the grid.
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Figure 4.2a  Rising Electric Grid Congestion
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Source: North American Reliability Council (NERC) Transmission Loading Relief Logs; Peter Huber and Mark 
Mills, “Transmission and Distribution,” Digital Power Report, October 2002.

The deregulation of interstate power sales had a number of consequences, including spurring 

investment in the new, unregulated power plants.  And, to stay well clear of regulation, these 

merchant generators steered clear of wires.  As for the grid companies, they remain snarled in 

regulation, their rates have been kept low, and investment in the wires has plummeted.  The 

combined effect: rising grid congestion.
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A car engine's logic still consists mainly of primitive linkages, rocker arms, contacts, 

valves, and gears.  Much of the weight of the conventional car engine, most of its cost, 

and all of the logical complexity, are located in these peripherals that surround the 

pistons and cylinders at the core.

Figure 5.1  Mechanical Drive Train
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Figure 5.2  Electric Drive Train
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Source: Peter Huber and Mark Mills, “The Powerchip Paradigm II: Broadband Power,” Digital Power 

Report, Dec. 2000, www.digitalpowergroup.com.

The car's power train is being transformed from mechanical-hydraulic to digital-electric 

because low-cost semiconductors can now control kilowatts of power faster, more 

precisely, more reliably, and in less space, than mechanical alternatives.  Car makers 

already spend more on etched silicon than on steel.
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Source: Peter Huber and Mark Mills, “Power Paradigm II: Broadband Power,” Digital Power Report,
December 2000.
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Figure  5.2a  Silicon Regulator

Silicon-controlled electric actuators are now set to displace the steel camshafts, belts, rods 

and pulleys in every part of the conventional engine and drive-train. Everything shrinks, 

everything gets lighter, and every aspect of performance improves—dramatically.
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Figure 5.2b  Storing Energy for Mobile Power

Electric batteries fail dismally on the energy-per-pound metric. 
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Figure 5.2c  Cost to Store Electric Power

Source: M.J. Riezenman, “Metal Fuel Cells,” IEEE Spectrum, June 2001; Isidor Buchmann, “Portable Power,”
Cadex Electronics, 2000; “Exoskeletons for Human Performance Augmentation,” DARPA Workshop 1999, Defense 
Sciences Office; Electricity Storage Association.

When electricity is used to extract hydrogen from water, the hydrogen-water combination serves, in 

effect, as a rechargeable battery. But not a very efficient one—it takes about 4 kilowatt-hours of 

electricity pumped into the water to get 1 kilowatt-hour of electricity back out of the hydrogen.   

Other battery chemistries are much more efficient and cost-effective, but store far less energy per unit 

of weight.
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The last step in the electric evolution of the automobile will be the largest: silicon and electric power 

will knock out the entire gear box, drive shaft, differential, and related hardware—all of which 

disappear when direct electric drives end up turning the wheels. When the wheels are driven 

electrically, the entire output of the engine—from 20 kW to 100 kW—will have to be converted 

immediately into electricity before it is distributed, used, or stored throughout the car.

Figure 5.2d  Electrification of the Automobile

©2005 Huber, Mills, The Bottomless Well, Basic Books, & www.digitalpowergroup.com



Source: Bosch, courtesy DaimlerChrysler.
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Figure 5.2e  Silicon and Electronics in the Automobile

The internal combustion engine won’t be eliminated in our time.  But the engine itself will be 

changed beyond recognition, as electronics and semiconductors continue to infiltrate the 

drivetrain and account for a steadily growing fraction of the cost of manufacturing the vehicle.
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Figure 6.1  The Cost of Illumination
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The cost of light has dropped ten-thousand-fold over the last two hundred years. 
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Figure 6.1A  Cost of Illumination
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Figure 6.1b  Photon Power Density

The demise of the evacuated bulb “gas lamp” began with the invention of the transistor, in 1948.  In 1962, Nick 

Holonyak, a General Electric researcher, managed to transform one of the three streams of current that flow 

through a transistor into a stream of light—the light emitting diode (LED).  In certain semiconductors, such as 

gallium (Ga) mixed with aluminum (Al) and arsenic (As), the quantum changes in electron states at a 

semiconductor junction are very efficient at emitting photons.  The shift from Edison’s filament to quantum 

technology radically improves performance—the new devices are much more compact, efficient, and cool.  In 

1963, Herbert Kroemer and Zhores Alferov proposed a theory for a heterostructure semiconductor device which 

would produce coherent laser beams; semiconductor lasers are now ubiquitous as well. 
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Figure 6.2  The Materials of Illumination
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Semiconductor junctions exploit the bizarre phenomena of quantum physics to convert 

electricity into light far more efficiently than is possible with conventional 

incandescent technologies.  Aluminum gallium arsenide (AlGaAs) shines red, gallium 

phosphide (GaP) green, gallium phosphide with arsenic (GaAsP) yellow, gallium 

nitride (GaN) blue. 
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Most wavelengths of "light" are invisible to the human eye. Different wavelengths 

illuminate, penetrate, and reflect in quite different ways.  The new semiconductor 

"light bulbs" can be configured to emit photons all across the electromagnetic rainbow.

The new transmitters and receivers of photon power can thus illuminate and see far 

more than the unassisted eye. 
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Source: L. Chen, “Advanced FPAs for Multiple Applications,” Raytheon, SPIE Proceedings on 
Infrared Detectors and Focal Plane Arrays VII, April 2002; Maxtech International. 
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Figure 6.3a  Infrared Sensing Materials

Different combinations of semiconductors are extremely sensitive to infrared light over 

a broad range of wavelengths.  Infrared imagers are proliferating on the factory floor, 

the highway, and the battlefield. 
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Source: “Commercial and Dual-Use Military Infrared Imaging,” Maxtech International; P. R. Norton, 
“Status of Infrared Detectors,” Raytheon, SPIE Conference on Infrared Detectors and Focal Plane
Arrays, August 2004.
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Figure 6.3b  Infrared Cameras

The infrared imaging chips now being incorporated in solid-state digital cameras are catching 

up with the resolution (pixels per chip) of conventional digital cameras that sense visible 

light.
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Figure 6.3c  RF Power from Semiconductors 

New families of semiconductor-materials are dramatically expanding the frequency range and 

power-handling capabilities of radio-frequency amplifiers.  Engineers can now use radio waves 

not just for communication but also to cut through clutter to see hidden targets, to measure 

liquid levels in tanks, to process chemicals and  pharmaceuticals,  to detect deterioration in 

concrete, pavements, bridges, and railroad beds, to map oil spills, and to locate buried wastes, 

underground, pipes, tunnels, and buried mines.
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Source: R. S. Symons, “Tubes: Still Vital After All These Years,” IEEE Spectrum, April 1998.
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Figure 6.3d  High-Power RF Transmitters

Lighting up a 100 kW broadcast antenna perched 1,000 feet above the ground, still requires 

hundreds of kilowatts of power pouring through banks of monster 30 kilowatt (or larger) 

vacuum tubes down at the base of the tower.  Semiconductor RF powerchips are now 

emerging to displace these tubes. 
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Figure 6.3e  Economies of Scale in Semiconductors

Source: “Wide Bandgap Semiconductors,” Proceedings of the IEEE (June 2002); Warren Weeks and 
Ricardo Borges, “Silicon Substrates Provide a Disruptive Technology for GaN,” Compound Semiconductor,
November 2001.
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Semiconductor devices get cheaper as engineers master the art of growing larger crystal 

wafers, on which the chip fabs build the devices.  The cost of cell phones dropped sharply with 

the availability of ever larger gallium arsenide (GaAs) wafers on which chip fabs manufacture 

the critical radio-frequency amplifiers. Silicon carbide (SiC) and gallium nitride (GaN) wafers, 

and the entirely new classes of devices that can be built on them, are now on a similar 

trajectory.
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At high power levels, lasers don’t move bits, they move atoms.  They fuse powdered metals into 

finished parts, heat, cure, mill, solder, drill, cut, all with fantastic improvements in speed, precision, 

and efficiency.  They create thermal pulses that can create entire new classes of material coatings, or 

move ink in mammoth commercial printing machines. 

Figure 6.3f  Semiconductor Lasers; From Bits to Atoms
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Figure 7.1  Energy Cost of Transportation versus Total U.S. Consumption*
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Efficiency improvements have not lowered the amount of fuel consumed in 

transportation.  The amount of fuel needed to move a vehicle 100 miles has fallen 

steadily, but total fuel consumption in the transportation sector has gone up. 
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Source: EIA, Annual Energy Review 2003 and Annual Energy Outlook 2004; Bureau of Economic Analysis.

Figure 7.2  Energy Cost of the U.S. Economy versus Total Consumption
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The U.S. economy as a whole is twice as energy-efficient today as it was in 1950—the

amount of fuel needed to produce $1 of GDP has been cut in half. But total energy 

consumption has almost tripled.  As they grew more efficient, we built more steam power 

plants, jet turbines, and car engines, light bulbs, electric motors, air conditioners, and 

computers, and used them more heavily—and total energy consumption went up.
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Source: EIA Annual Energy Review 2003.
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Figure 7.2a  Electric and Non-Electric Energy Intensity

“Energy intensity”—the energy consumed per dollar of economic output—is declining.  But it has 

been for the last 20,000 years.  The GDP of our hunter-gatherer ancestors was nothing but energy, in 

the form of food calories.  Wealthier economies add less energy-intensive goods to the mix, so 

energy consumption per unit of GDP falls.  But adding a lot of energy-lite consumption is like 

adding artificial sweetener to a diet—it doesn’t, in itself, lower total calories.
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Figure 7.3  Combustion Engine Efficiency and Speed
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More efficient devices are usually run faster--gas turbines are exceptionally efficient, 

but only when their blade tips move at near sonic speeds.  But faster devices get used 

more, to deliver more miles, generate more electricity, weave more fabric, or reap 

more wheat. 
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Figure 7.4  Cost of Transmitting Information versus Total U.S. Energy Demand
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Source: EIA, Annual Energy Review 2003; U.S. Census Bureau, Historical Statistics of the United States 

Colonial Times to 1970;  Ithiel de Sola Pool, Technologies of Freedom (Bellknap Press, 1983).

Historical trends do not support the suggestion that improvements in information 

technology will reduce demand for energy.  The cost of conveying information has 

been dropping rapidly since the days of Bell and Marconi.  But energy consumption 

has risen relentlessly. 
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Power is one of three fundamental inputs that determine the productivity of labor in every sector of 

the economy; the other two are material and information.  Capital constructs intelligent 

configurations of concrete, steel, and silicon; power makes these structures run.  Power moves the 

worker to the increasingly distant workplace, drives the intelligent machines that surround him 

there, and processes the materials and information that he works with. 
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Source: Peter Huber and Mark Mills, “Digital Movers,” Digital Power Report, February 2002.
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Figure  8.1a  Power Conversion and Control

From the new classes of power semiconductors, manufacturers can now build ultra-compact 

and efficient power supplies, capable of shaping voltage and current in any manner desired. 

Because the functional parts are so small, these devices are extremely fast and efficient.  We 

can now, for the first time ever, speak of digital power—power under the control of systems 

so fast and precise that the power becomes as tractable and ordered as digital logic.
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Source: Peter Huber and Mark Mills, “Networking the Digital Factory,” Digital Power Report, September 2001.

Figure 8.1b  The Digital Factory

The newest industrial robots—which are, by and large, complex configurations of electric servomotors—

come packed with sensors. And software interfaces now allow their instant reconfiguration to perform 

new tasks—a dramatic advance over previous systems that required hours of manual rewiring.  Digital 

power, digital logic, programmability, and open standards transform highly specialized, product-specific 

manufacturing machines into general-purpose, atom-crunching material processors.
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Figure 8.1c  Software in Electric Power Supplies
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Source: Peter Huber and Mark Mills, “Power Supplies,” Digital Power Report, August 2002.

Embedded lines of software code in the ubiquitous ac-dc and dc-dc electric power 

supplies provide a simple if imperfect measure of the rise of digital power technologies.

Until about 1990, few power supplies contained any code at all. Today, they routinely 

incorporate 10,000-plus lines into the software and firmware.  High-end units contain 

closer to 100,000 lines.  And the total is rising geometrically, year by year.
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Figure 8.1d  Machine Tools of the Digital Age

The first power revolution—James Watt’s—transformed industry, and then heavy-duty 

transportation.  The second—Otto’s—brought high-speed transportation to the masses.  The next 

great revolution in powered machines is defined by the rise of digital power, dexterous robots, 

and networked factories. The new machines are nimble, thoughtful, responsive, and intuitively 

dexterous.  They don’t move bits, they move stuff—out of the mine and the farm, through the 

factory, along the assembly line, down the highway, over the water and through the air.  The 

machines are nimble, thoughtful, responsive, and intuitively dexterous. 
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Figure 8.2  Energy and Prosperity
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The more energy a nation uses, the richer it gets.  Powered machines boost 

productivity, which boosts wealth. 
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It takes increasingly pure high-density power to speed up the car, factory, computer, or 

connection to the Web.  We consume more energy to save more time. 
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Figure 9.1a  Powering Wireless Bandwidth

In telecommunications, the maximum capacity—i.e. bandwidth—of a communication channel is directly 

related to the average signal power: the higher the ratio of the signal power to the background noise, the 

faster it is possible to transmit data through the channel.  All of the private, commercial, and military 

radio-frequency transmissions together consume about one percent of all our electric power; we thus burn 

about 10 million tons of coal per year (and the energy equivalent in gas and uranium) to propel weightless 

photons through space.

©2005 Huber, Mills, The Bottomless Well, Basic Books, & www.digitalpowergroup.com



Air

Cars, Buses,
Motorcycles

Walking

Trains

1880 1920 1960 2000

102

10

1

10-1

10-2

Regression Line, 
(2.7% per year)

Total, Average 
per Decade

HorsesA
v
e
ra

g
e

D
is

ta
n
c
e

p
e
r

Y
e
a
r

(k
m

/P
e
rs

o
n
/D

a
y
)

Figure 9.2  Travel

Source: Ausubel and Marchetti, “The Evolution of Transport,” The Industrial Physicist, April 2001.

We consume more energy to extend our range.  Most of the miles we travel by car 

today would never have been traveled on horseback; most of the miles we fly would 

never have been traveled in trains.
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Figure 9.2a  Platforms for Projecting Military Power

The projection of power is the essence of war.  Lighter, faster platforms that project more 

power prevail. 
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Source: First to Fly.com, USAF Museum, Boeing, Aerovironment.
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Figure 9.2b  Projecting Military Power: Leading Edge Aviation

The pilot of the Predator—a Pterodactyl-sized digitally-powered airship—sits hundreds of miles away 

from the battlefield, steering a comparative tiny platform that bears digital eyes and digital artillery.  

Fully functional eagle-sized, bat-sized, then butterfly-sized, autonomous vehicles have already been 

built.  The electric-powered Black Widow typifies the edge of a new family of tiny flyers. 
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Figure 9.2c  Powering the Land Warrior

Even the foot soldier now depends on an ever-increasing supply of portable power.
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Figure 9.3  Core Microprocessor Trends
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As gates on a chip get smaller, operating voltages must be lowered or the insulating 

layers break down.  But as gates get smaller, more get packed on to the chip, power 

consumption for the chip as a whole goes up, and higher voltages are required to pump 

in the power.

*

* Introduction of the CMOS transistor architecture
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Figure 9.3a Core CPU Trends

More gates and higher speeds mean more power consumption for the device as a whole.  Thus, 

tens to hundreds of watts, fluctuating at gigahertz speeds, have to be pumped into today’s 

microprocessors—and the power requirements keep rising, not falling.  The only way to get that 

much power into that small a space is to use higher voltages.  But the only way for such a small 

a gate to survive is to run at lower voltages.  Thus, the discrete logic element heads south toward 

zero voltage and power, while the overall power consumption of the intelligent chip heads north 

toward infinite voltage and power. 
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Figure 10.1  Global Carbon Flux
(Billion Metric Tons Carbon)
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Source: EIA, International Energy Review 2002 (data are from 1999). 

Fossil-fuel combustion and deforestation release carbon into the atmosphere.  Human 

agriculture and forest regeneration remove it.  Much larger carbon fluxes are propelled 

by plant and animal life in the rest of the biosphere, and by the weather over the 

oceans.
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Source: Peter Huber and Mark Mills, "From Carbohydrates to Hydrocarbons," Grenzen ökonomischen 

Denkens: Auf den Spuren einer dominanten Logik, ed. Hans A. Wüthrich et al. (Gabler Press, 2001), p. 
151. Data for contiguous U.S.

30 m

30 m

Highway

Urban

Energy

Airport

33 m

33 m

77 m

77 m

Pasture

Crop

Range

A century ago, a pioneering American family required 40 acres and a mule.  Today, 

allocated per capita, the average American uses far less—about 2 acres in total for 

dwelling, roads, farm, range, and energy supplies. 
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Per acre of land used, agricultural productivity at least tripled in the twentieth century, 

in large part because so much less land is now required to power the plow.  A horse 

required 2 acres of pasture to meet its energy needs; the oil wells that fuel a tractor 

occupy much less space. 

Source: U.S. Census Bureau, Historical Statistics of the United States Colonial Times to 1970.
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Source: R. Doering and Y. Nishi, “Limits of Integrated Circuit Manufacturing,” Proceedings of the IEEE 
(March 2001); Peter Huber and Mark Mills, “Applying Materials in the Perfect Storm,” Digital Power Report,
March 2003.
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A Pentium 4 microprocessor consumes about 20 watts per square centimeter—ten thousand 

times more, in power density terms, than a PV solar cell can generate.  Semiconductor-grade 

silicon for digital circuits is currently being shipped ten times faster than silicon destined to 

make PV cells. 
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Figure 10.3b  Distributed Power: Silicon and Diesel
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Source: Peter Huber and Mark Mills, “Transmission and Distribution,” Digital Power Report, October 2002.

Boron- or phosphorus-doped silicon wafers mounted in glass or plastic can currently capture about 

30 watts per square meter on a round-the-clock average in the United States—making 

photovoltaics (PV) about forty times better than the typical leaf of a green plant.  A small diesel-

fueled electric generation can pump out nearly one million times the power in the same square 

meter.  Diesel-electrics dominate the shipments of small distributed generators.
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Figure 11.1  U.S. Energy Production and Cost

Source: EIA, Annual Energy Review 2003; American Petroleum Institute; John Fisher, Energy Crises in 

Perspective (Wiley, 1974).
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Continuous improvement in the energy-consuming technologies that find and retrieve 

energy has kept energy prices stable—or falling—over the long term.  1 million Btu of 

electricity is a 60 W light bulb running for 6 months; 1 million Btu of gasoline is about 

8.1 gallons, and 1 million Btu of crude oil is about 7.1 gallons.
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Figure 11.2  U.S. Agriculture, Population, and Energy
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Colonial Times to 1970; Bureau of Economic Analysis; Louis Johnston and Samuel H. Williamson, "The 
Annual Real and Nominal GDP for the United States, 1789 - Present," Economic History Services, April 
2002.

James Watt's coal-fired steam engine was invented to mine more coal.  In short order, 

humanity was harvesting billions of tons of plants that had grown in the Cretaceous and 

Carboniferous periods some 65 to 360 million years ago.  Energy consumption and wealth 

have since risen exponentially.
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Source: The Why Files, www.whyfiles.org.

Figure 12.1  DNA
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Life is a confluence of energy and information.  Stored chemical

energy—a sugar, basically—makes up the backbone of Deoxyribose 

Nucleic Acid (DNA).  The cross-bars of the helix store information—

the genetic code.
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